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SOLUTION OF CONTACT PROBLEMS WITH KNOWN GREEN'S FUNCTION* 

A.S. KRAVCHUK 

An iteration algorithm is proposed for solving contact problems with previously un- 
known contact zone by taking account of friction in the contact zone, when the ad- 
hesion and slip zone interface is also unknown. Stability of the algorithm is 
investigated, and examples are presented. 

Let us consider the problem of contact between a deformable body and an absolutely rigid 
smooth stamp. We assume that a function k(s, y) is constructed which permits determination of 
the displacement U(I) on the body surface by means of the contact pressure p(y) given on this 
same surface. The classical scheme for solving the contact problem is to pass to the integral 
equation 

where the right side a is determined by the initial gap between the body and the stamp. In 
general, the domain S, is unknown, depending on the external effects, and is determined (for 
smooth stamps) from the condition that the contact pressure vanishes on the boundary of S,. 

The kernel k(r,y) of equation (0.1) is singular for plane and spatial problems of elastic- 
ity theory, and often has a very complex form /1,2/ which makes the construction of analytic 
solutions and the utilization of numerical methods difficult. However, the main difficulty is 

that the problem of determining the function p(y) from equation (0.1) is incorrectly formulated 
/3/. The method proposed below is free of this disadvantage and, moreover, permits easy deter- 
mination of the true contact zone. 

l.Description ofthemethod. The method is based on one of the results in /4/, which 
is that the solution of the contact problem posed above is equivalent to seeking the saddle 
point of the following functional: 

L(v, ‘a)= J(o)+ 1 p (UIV - 6ru)daT (1.1) 
s, 

where J(u)is theenergy functional, S, is the greatest possible contact zone, bN istheinitial 

gap, 1: is the displacement field, UN is the normal displacement in the contact zone (see more 
accurate definitions in /5/). The saddle point (minimum in v and maximum in p) of the func- 
tional (1.1) is sought under the additional constraint 

P (x) G 0 (1.2) 

The following modification of the Arrow-Hurwitz (Udzawa) method is hence used /6/: 
1) The contact pressure distribution is given in the zero-th approximation P = PO (2); 
2) The problem of minimization of the functional (1.1) in V is solved,whereuponthe zero-th 

approximation of the displacement field u = u"(z) is determined; 
3) For a fixed uO(z) the functional (1.1) is maximized in p by a gradient method with the 

projection in the set (1.2), which results in the following formula for the contact pressure 
in a first approximation 

i 
0. 

p’ = P, {p” - po (UN0 - &v)), PO (Pl = 
p> 0 

P> PSO 

where l',is the orthogonal projection operator in the set (1.2), and p,, is a numerical para- 
meter governing the step length. 

If it is assumed that the function k(s,y) is known, then stage 2) of this algorithm is 
realized exactly by means of the formula 

u.$ (5) = i k (z, y) p’(y) d.)‘, = k {P”) 

E 
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Calculations by means of (1.4) are fraught with certain difficultiesofatechnicalnature, 
but not in principle. 

2. Dual formulation of the method of solution. By the method of /4/ (Sect.Z), 
it can be shown that the problem under consideration here about the contiguityofadeformable 
body to an absolutely rigid stamp is equivalent to the following problemforseekingthesaddle 
point 

A,j,,U,,Uij dQ $ 5 O<jVjgi as f 5 (SNUN dS) 
s.. s, 

(2.1) 

M* = {u* 1 div c* + pF = 0; aijy; IS,= Pi; br Is, = 0) (2.2) 

K = {v 1 UN (x) < 6N (z), X E s,} 

Here cij are stress tensor components, Aijkr, are components of the compliance tensor, S, 
is the part of the body surface where the displacements gi are given while the forces Pi are 
given on S,, and the condition cr = 0 means no friction. 

Realizing the idea of seeking the saddle point used in Sect.1, we arriveatthe following 
algorithm (which it is natural to call the dual to the algorithm in Sect.1): 

1) The normal displacement distribution on S, is given in a zero-th approximation: uN = 
UN0 (I); 

2) The problem of maximizing the functional (2.1) in c* is solved, its exact solution re- 
duced to solving an elasticity theory problem with the following boundary condition on S,: 

UN = nX" (x), (Jr@) = 0, r E S, (2.3) 

3) A step is taken in the direction of the most rapid decrease in the functional (2.1) 
with respect to V, a correction to UN on S, 

UpN+l = P,, {UN' - f&(JN’} (2.4) 

where P, is the orthogonal projection operator in the set K, pF is a dimensional parameter 
controling the step length, and r is the number of the iteration. 

To realize stage 2) of this algorithm, it is necessary to have an operator connectingthe 
force on the body surface with the displacements of points on this same surface, the inverse 
to (1.4). 

3. On the stability of the algorithms. Let the left side of the inequality, the 
non-penetration condition,be denoted by D(u), and let us rewrite the formula (1.3) as follows 

(S is the number of the approximation): 

for 

s+1 8 

= = 6 LP, (P” + PSQ @‘)I - P”1 pa 
Performing the passage to the limit here as Ps+ 0, we obtain a "differential'lequation 

P 
p’# = P, (0 (US)} 

By using (1.4), we find (we omit the superscript s) 

P' = J',P (k (~1)) (3.1) 

The algorithm (1.3) can evidently be treated as the simplest difference scheme for the 
solution of the "ordinary" differential equation (3.1). By approximating the derivative p- 
by more exact difference relations, we arrive at other iteration schemes for solving the con- 
tact problem. 

Let us emphasize that (1.3) does not describe the physical process but the motion to the 
saddle point along a certain growth trajectory of the functional L(u,p) with respect to p. 
By constructing the trajectory of such motion from more exact considerations, differential 
equations can be obtained with derivatives of order higher than the first, and iteration pro- 
cedures of higher accuracy can naturally be obtained which are perhaps more advantageous, but 
this question requires a separate investigation. 

By using the known results about the qualitative propertiesoftheoperator k and theorems 
on the stability of solutions of differential equations in Banach spaces /7/, the question of 
the stability of the iteration process with respect to roundoff errors and other perturba- 
tions associated with the error of discretization can be investigated. In particular, by 
using known theorems on the spectrum of the operator k, we have an assertion concerning the 
the stability of the procedures proposed above for contact problems with a constant contact 
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zone, including mixed problems (let us again note that we speak about the stability of the 
solutions of equation (3.1)). For problems with a variable contact zone, the operator I), 

{a) (k {PI)} is nonlinear; however it is non-negative determined, which affords a possibility 
for affirmative solution, in principle, of the question of stability also in this case. 

4. Examples. lo. Let us examine the classical problem of the insertion of an absolut- 
ely rigid ball in an elastic isotropic half-space and in the example of this problem we study 

the question of the rate of convergence of an Udzawa-type iteration procedure, the behaviorof 

the sequence of approximate solutions, the difference in the solutions due to the differencein 
the possible non-penetration condition. 

We perform discretization by the influence matrix method (A.A. Il'iushin). To do this, 
we enclose the greatest possible contact zone in a square, we select the axes IJJ,, OJ, along 

thesides of the square, and direct the OS, axis deep into the half-space. We partition the 
square by lines parallel to the axes (IS, and 0~~ 

.I ,' Ii - 1) il. rli -- (i - 1) it, 1 i. j -r Al I- 1 

and in each little square (ill (we consider the number of the square to agree with the number 
of the corner, the apex closest to the origin) we approximate the contact interaction force by 
the constant JJ~~', fi =1,2,3; we combine the set of all such constants into the vector (p), and 
we combine the set of displacements up*' = ~~(.~lil,z~',O),(j == I.!?.3 into the vector (u). By using 
the Boussinesq and Cerruti solutions for a half-space, we construct the matrix IB] connecting 
the vectors {p) and (u] In) = [B](P) 

The elements of the matrix [E] are calculated explicitly; the details of the calculations 

and the methods of shaping and storing the matrix [H] are published in /8/. 

The rate of convergence of the sequence of approximate solutions obtained by using the 

algorithm l)- 3) of Sect.1 is illustrated in Figs.1 and 2. The function p-= 1 is selected as 

the zero-th approximation. Here Nis the number of the iteration in Fig.1, and ~~/~~lL~~,h- !IP: I. 

It is seen that 11~~11 (the dashed line) and the pressure /'-pPa at the center point (0.5,0.5;0) 

(solidline) are rapidly stabilized, where I' tends non-monotonically to the exact solution. 
Contact pressure distributions over the diameter are shown in Fig.2, where the number of the 

curve is the number of the iterations. It is seenthatthepressure variessufficiently sharply 

in a strip adjacent to the edge of the contact zone, despite the stabilization of !I P II f There- 
fore, the local condition for stopping the iteration process le is a given positive number) 

is more preferable than global conditions of the type l,rjzll -p,,/i~. P or ltl~,,,l/-I;PIII i 8. 
As has been established in /5/, the non-penetration conditions 

Y (.r, -1~ U (z) .V’JT (s) ;_ 0, "\ (I) . b,. (,r) (4.1) 

(+, is a segment normal to the undeformed boundary of the body and the stamp, and II, is the 

projection of u on the normal to the body) are equivalent in the sense of asymptotic accuracy, 

as /II 1 and the gap b, tend to zero. 

The contact pressure diagrams obtained are displayed in Fig.3; the solidcurve corresponds 

to the first of the conditions (4.11, and the dashes to the second. These curves differby15X 

at the center of the contact zone; such a noticeable effect is explained by the comparatively 

large depth of insertion ~l.iii?il( (1< is the radius of the ball). 

The displacement distributions corresponding to conditions (4.1) are displayed in Fig.4 

(the solid curve corresponds to the first of conditions (4.1) and the dashes to the second,the 

normal displacements are large in absolute value). The difference between the normal displace- 

ment diagrams is explained by the fact that the displacements squared are discarded in the 

derivation of the first of conditions (4.1) (in both cases the non-penetration conditions are 

satisfied to three significant figure accuracy). 

20. Let us consider the problem of a ball rolling with friction on the boundary of a half- 

space with constant linear and angular velocities z.~' and wc in direction and magnitude,where 

the vector or is assumed perpendicular to the vector Pi.. Let us also give the depth of sub- 

mersion 6 of the ball; by knowing L.~',w?, 6, we are required to determine the contact zone and 

the contact interaction force. To solve the problem we apply the principle of possible velocit- 

ies, in conformity with which we have the equation 

SL,~~~~,'~,,(U)~~,(~~I')~!!~- \ :Nh~‘N'dS- i; jr. (~2; ~ M; - u;,)d.‘i = 0 (4.2) 

!! $c B ? 
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where UTe‘ is the projection of the velocity of a point of the ball surfaceonthetangentplane. 
Equation (4.2) is written in a moving coordinate system whose origin is at the center of the 
ball, the Ox1 axis agrees with the direction of the vector -c~*, the Ox8 axis with o,, and 
the OS* axis is directed deeply into the half-space. The non-penetration conditionthatagrees 
with the first of the conditions (4.1) was used in the calculations SO that '3~ in (4.2) isthe 
projection of the surface force vector on the normal to the ball, ur onto the tangential plane, 

VT’ is the tangential component of the possible velocity, and 11~' is the true velocity. 
It has been established /9/ that (*) 

UT' = Iv,’ 1 (adaz,) (4.3) 

In the calculations, the derivative Bu/azl was replaced by the ratio of the finite differ- 
ences. 

To solve (4.2) with an associated Coulomb friction law, non-penetration condition, and 
condition of no tensile forces in the contact zone, an algorithm was used which is a modific- 
ation of the algorithm in /lo/, whose convergence is established also as in /lo/: 

1) Given are contact interaction forces in the zero-th approximation 

‘N = (J.&Q Cd, CJ T = UT0 cd; 

2) The elasticity theory problem is solved with the boundary conditions of the form 

'Tij Vj = U&fovt + (OT')l; 

on S,; actually, calculations are performed by the formula (u)= [Bl(pl, whereuponthedisplace- 
ment field u= Us is determined; 

3) The contact interaction forces are corrected by a formula of the type (1.3) for oNand 

(4.4) 

(4.5) 

where UT‘ in (4.4) is evaluated by means of (4.3). 
The initial data are the length of a side of the square 1= 1, the radius of the ball R = 

1, M=16, the shear modulus p= 1, the Poisson's ratio Y = 0.3, 6=0.1627R, lo,l= Ir,‘I/R (the absol- 
ute value of Q' evidently does not influence the result), the friction coefficient f = 0.1. 

Some of the results obtained are given in Fig.5. The solid line is the displacement dis- 
tribution over the diameter of the contact spot in the motion direction, the dashed line is 
the distribution of the relative velocities or'= uT'-ur; on the line z‘1 = 0.5; there is evid- 
ently a cohesion zone at the center of the contact spot and two slip zones along the edges. 
Let us note that a lead zone , particle drift ahead of the motion, was obtained in certain mod- 
ifications of the computations, however this effect is quite weak andthepowerofthe electronic 
computer (EC-1022) turned out to be insufficient for a confident prediction. 

*) Gol'dshtein, R-V., A.F. Zazovskii, A.A. Spektor, and R.P. Fedorenko. Solution of three- 
dimensional contact problems of rolling with slip and cohesion. Preprint No.134,Inst. Problem 
of Mechanics, Acad. Sci. USSR, Moscow, 1979. 
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Let us also note that the convergence of the method used in 
the rolling problem is slow , and stabilization of the resultswas 
achieved successfully only for N - 150--200 . The convergence can 
visibly be accelerated by simultaneous utilization of the matrix 
[El and the matrix relating the derivatives with respect to .z~ 
of the solution on the boundary to the vector (P) ; suchamatrix 
was constructed earlier (*). 

Fig.5 
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