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SOLUTION OF CONTACT PROBLEMS WITH KNOWN GREEN‘S FUNCTION”

A.S. KRAVCHUK

An iteration algorithm is proposed for solving contact problems with previously un-
known contact zone by taking account of friction in the contact zone, when the ad-

hesion and slip zone interface is also unknown. Stability of the algorithm is

investigated, and examples are presented.

Let us consider the problem of contact between a deformable body and an absolutely rigid
smooth stamp. We assume that a function k(z, y) is constructed which permits determination of
the displacement u(x) on the body surface by means of the contact pressure p (y) given on this
same surface. The classical scheme for solving the contact problem is to pass to the integral
equation

S E{x, y) p (9) 45, = ¢ () (0.1)
S

c

where the right side ¢ (z) is determined by the initial gap between the body and the stamp. In
general, the domain §; is unknown, depending on the external effects, and is determined (for
smooth stamps) from the condition that the contact pressure vanishes on the boundary of Se.

The kernel k({r,y) of equation (0.1l) is singular for plane and spatial problems of elastic-
ity theory, and often has a very complex form /1,2/ which makes the construction of analytic
solutions and the utilization of numerical methods difficult. However, the main difficulty is
that the problem of determining the function p (y) from equation (0.l) is incorrectly formulated
/3/. The method proposed below is free of this disadvantage and, moreover, permits easy deter-
mination of the true contact zone.

1.Description of the method. The method is based on one of the results in /4/, which
is that the solution of the contact problem posed above is equivalent to seeking the saddle
point of the following functional:

L@, p=J @)+ | pox—dmds (1.1
SC
where J (v) is the energy functional, S, is the greatest possible contact zone, 6y is the initial
gap, v is the displacement field, vny is the normal displacement in the contact zone (see more
accurate definitions in /5/). The saddle point (minimum in v and maximum in p) of the func-
tional (1.1l) is sought under the additional constraint

p ) <<O (1.2}
The following modification of the Arrow —Hurwitz (Udzawa) method is hence used /6/:
1) The contact pressure distribution is given in the zero-th approximation p = p’(z);

2) The problem of minimization of the functional (l.l) in v is solved, whereupon the zero-th

approximation of the displacement field u = u’(x) is determined;

3) For a fixed u’(r) the functional (1.1) is maximized in p by a gradient methed with the
projection in the set (1.2), which results in the following formula for the contact pressure
in a first approximation

0, p>>0

pt = Ps {p" — po (un® — 8n)}, pc{l’):{p1 p <O (1.3)

where P, is the orthogonal projection operator in the set (1.2), and p, is a numerxical para-
meter governing the step length.

If it is assumed that the function £k (z, y) is known, then stage 2) of this algorithm is
realized exactly by means of the formula

un® (@) = § k(@ y) P () 45y = k{p%) (1.4)
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Calculations by means of (1.4) are fraught with certain difficulties of a technical nature,
but not in principle.

2. Dual formulation of the method of solution. By the method of /4/ (Sect.2),
it can be shown that the problem under consideration here about the contiguity of a deformable
body to an absolutely rigid stamp is equivalent to the following problem for seeking the saddle
point

max mln{— %-S Ai,-khckhcide + S O45Vi8; as 4- S ONUN dS} (2.1)
o*=M* veK S ks sc

u
M* = {¢* |dive* 4+ pF =0; o;v;|S,=Ps; orls, =0} (2.2)

K={U[UN(I)<6N(I)’ z & 8}

Here o;; are stress tensor components, A;;; are components of the compliance tensor, S,
is the part of the body surface where the displacements g; are given while the forces P; are
given on S, » and the condition 67 = 0 means no friction.

Realizing the idea of seeking the saddle point used in Sect.l, we arrive at the following
algorithm (which it is natural to call the dual to the algorithm in Sect.l):

1) The normal displacement distribution on S, is given in a zero-th approximation: uy =
un® (z);

2) The problem of maximizing the functional (2.1) in o* is solved, its exact solution re-
duced to solving an elasticity theory problem with the following boundary condition on S

uy = ux® (), or(x) =0, z& Sc (2.3)

3) A step is taken in the direction of the most rapid decrease in the functional (2.1)
with respect to v, a correction tc uyon §,

u’l“;l = P, {uNT - Pr"NT} (2.49)

where P, is the orthogonal projection operator in the set K, p, is a dimensional parameter
controling the step length, and r is the number of the iteration.

To realize stage 2) of this algorithm, it is necessary to have an operator connecting the
force on the body surface with the displacements of points on this same surface, the inverse
to (1.4).

3. On the stability of the algorithms. Let the left side of the inequality, the
non-penetration condition, be denoted by @ (u), and let us rewrite the formula (1.3) as follows
(s 1is the number of the approximation):

== pL [P (p* + @ (1)} — P

Performing the passage to the limit here as ps—> 0, we obtain a "differential'equation

for
g P = Po (O ()

By using (1.4), we find (we omit the superscript s)
p = Po {®@ (k {p})} (3.1)

The algorithm (1.3) can evidently be treated as the simplest difference scheme for the
solution of the "ordinary" differential equation (3.1). By approximating the derivative p’
by more exact difference relations, we arrive at other iteration schemes for solving the con-
tact problem.

Let us emphasize that (l1.3) does not describe the physical process but the motion to the
saddle point along a certain growth trajectory of the functional L (v, p) with respect to p.
By constructing the trajectory of such motion from more exact considerations, differential
equations can be obtained with derivatives of order higher than the first, and iteration pro-
cedures of higher accuracy can naturally be obtained which are perhaps more advantageous, but
this question requires a separate investigation.

By using the known results about the qualitative properties of the operator % and theorems
on the stability of solutions of differential equations in Banach spaces /7/, the question of
the stability of the iteration process with respect to roundoff errors and other perturba-
tions associated with the error of discretization can be investigated. 1In particular, by
using known theorems on the spectrum of the operator %, we have an assertion concerning the
the stability of the procedures proposed above for contact problems with a constant contact
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zone, including mixed problems (let us again note that we speak about the stability of the
solutions of equation (3.1)). For problems with a variable contact =zone, the operator P,
{® (k {p}))} is nonlinear; however it is non-negative determined, which affords a possibility
for affirmative solution, in principle, of the question of stability also in this case.

4. Examples. 1°. Let us examine the classical problem of the insertion of an absolut-

ely rigid ball in an elastic isotroric half-csrnace and in the examnle of +this »voblem we study
ely rigld pall 1n an elastic 1isotroplc hali-space and 1in the example of this problem we study

the question of the rate of convergence of an Udzawa-type iteration procedure, the behavior of
the sequence of approximate solutions, the difference in the solutions due to the difference in

+he vossible non—-vena+ration =31
the possible non-penetration condition.

We perform discretization by the influence matrix method (A.A., Il'iushin). To do this,
we enclose the greatest possible contact zone in a square, we select the axes 0z, Os, along
the sides of the square, and direct the «r; axis deep into the half-space. We partition the

square by lines parallel to the axes o¢r, and Or
R e N (R I U S A Iy " A

and in each little square (i} (we consider the number of the square to agree with the number
of the corner, the apex closest to the origin) we approximate the contact interaction force by
the constant pB“,ﬁazigLS; we combine the set of all such constants intc the vector {p}, and
we combine the set of displacements ugh! = ug (s, 2,4, 0),f= 1.2,3 into the vector {u}. By using
the Boussinesq and Cerruti solutions for a half-space, we construct the matrix [B] connecting
the vectors in! and {u}

tne ectors {p; and

{wy = [Blp}

The elements of the matrix [B] are calculated explicitly; the details of the calculations

and the methods of charing and storing the matrix 1821 are nublished /e/
and the metnods ©I shaping and sterxing the matrix [B] are publisned in /o/.

The rate of convergence of the sequence of approximate solutions obtained by using the
algorithm 1)— 3) of Sect.l is illustrated in Figs.l and 2. The function p =1 is selected as

avo—th s rowimo 4 Py Ao = A |1 nll {

the zero-th anyuA.uuaLJ.uu. Here N is the number of the iteration in Fig.l, and e = L‘A I[VJ |-
It is seen that | p| (the dashed line) and the pressure p = p, at the center point (0.5,0. 5 ,0)
(solid line) are rapidly stabilized, where p tends non-monotonically to the exact solution.
Contact pressure distributions over the diameter are shown in Fig.2, where the number of the
curve is the number of the iterations. It is seen that the pressure varies sufficiently sharply
in a strip adjacent to the edge of the contact zone, despite the stabilization of |p|. There-
fore, the local condition for stopping the iteration process (¢ 1s a given positive number)

men]p\Jrl — py [/ €
114)
is more preferable than global conditions of the type |py.,, —pyl<t or lilpygb—lpyll <.
As has been established in /5/, the non-penetration conditions

Vo) + ou(x) VY (1) = 0, uy (2) 7 Op (1) (4.1)

0y, 1is a segment normal to the undeformed boundary of the body and the stamp, and u, is the
projection of v on the normal to the body) are equivalent in the sense of asymptotic accuracy,
as |« | and the gap o, tend to zero.

The contact pressure diagrams obtained are displayed in Fig.3; the solid curve corresponds
to the first of the conditions (4.1), and the dashes to the second. These curves differby 15%
at the center of the contact zone; such a noticeable effect is explained by the comparatively
large depth of insertion 0.1627# (## 1s the radius of the ball).

The displacement distributions corresponding to conditions (4.1) are displayed in Fig.4
(the solid curve corresponds to the first of conditions (4.1) and the dashes to the second,the
normal displacements are large in absclute value). The difference between the normal displace-
ment diagrams is explained by the fact that the displacements squared are discarded in the
derivation of the first of conditions (4.1) (in both cases the non-penetration conditions are
satisfied to three significant figure accuracy).

20, Let us consider the problem of a ball rolling with friction on the boundary of a half-
space with constant linear and angular velocities ., and . in direction and magnitude,where
the vector o, is assumed perpendicular to the vector v . Let us also give the depth of sub-
mersion & of the ball; by knowing ' w8, we are required to determine the contact zone and
the contact interaction force., To solve the problem we apply the principle of possible velocit-
ies, in conformity with which we have the equation

S"ijkhgkh (u)#;, (Su’y oty K by dS — \ Sp- (U‘T — ”'T — u,}r) ds = (4.2)

I S, Se



Contact problems with Green's function 217

7~
- 016 .

0.4 g 7 b
/,/‘ /
7 4
ftph 4 Pl e : ,/ vi
/ /!
0.08 4

0.4 / L/

a8

J20 / 0.8 %

240 0.6 l——ﬂl”
| oAy

160 04 /[

8 16 24 N 0.2

LIS

[

RN

0.2 04 1, 0.2 04 z,

o) I
Y
Bl

Fig.l Fig.2 Fig.3 Fig,.4

where u;’ is the projection of the velocity of a point of the ball surface on the tangent plane,
Equation (4.2) is written in a moving coordinate system whose origin is at the center of the
ball, the Oz axis agrees with the direction of the vector —z., the Oz, axis with ¢,, and
the Oz; axis is directed deeply into the half-space. The non-penetration condition that agrees
with the first of the conditions (4.1) was used in the calculations so that oy in (4.2) is the
projection of the surface force vector on the normal to the ball, ¢, onto the tangential plane,
vy 1s the tangential component of the possible velocity, and ;" is the true velocity.
It has been established /9/ that (*)

up' = || (6u/611) (4.3)

In the calculations, the derivative du/dz; was replaced by the ratio of the finite differ-
ences.

To solve (4.2) with an associated Coulomb friction law, non-penetration condition, and
condition of no tensile forces in the contact zone, an algorithm was used which is a modific-
ation of the algorithm in /10/, whose convergence is established also as in /10/:

1) Given are contact interaction forces in the zero-th approximation

oy = 0p°(2), Oy = 070 (z);
2) The elasticity theory problem is solved with the boundary conditions of the form
05 v; = oN™ + (0705
on S;; actually, calculations are performed by the formula {u} = [B]{p}, whereupon the displace-~

ment field u= u’(z) 1is determined;
3) The contact interaction forces are corrected by a formula of the type (1.3) for oy and

oh =Py {S%ApTo(u’,})‘—u;n)) (4.4)
Sy l51l<f|51vl (4.5)

Prf{s )=
7 &r) {(GT/ISTI)fISNL {57 1> Fflay|

where u; in (4.4) is evaluated by means of (4.3).

The initial data are the length of a side of the square !=1, the radius of the ball R =
1, M = 16, the shear modulus pu =1, the Poisson's ratio v = 0.3, 8=0.1627R, | o, | = |r,|/R (the absol-
ute value of » evidently does not influence the result), the friction coefficient f=04.

Some of the results obtained are given in Fig.5. The solid line is the displacement dis-
tribution over the diameter of the contact spot in the motion direction, the dashed line is
the distribution of the relative velocities vy = up —ug, on the line 2, =0.5; there is evid-
ently a cohesion zone at the center of the contact spot and two slip zones along the edges.
Let us note that a lead zone, particle drift ahead of the motion, was obtained in certain mod-
ifications of the computations, however this effect is quite weak and the power of the electronic
computer (EC-1022) turned out to be insufficient for a confident prediction.

*} Gol'dshtein, R.V., A.F. Zazovskii, A.A. Spektor, and R.P. Fedorenko. Solution of three-
dimensional contact problems of rolling with slip and cohesion. Preprint No.134, Inst. Problem
of Mechanics, Acad. Sci. USSR, Moscow, 1979.
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Let us also note that the convergence of the method used in

4.008 01 the rolling problem is slow, and stabilization of the results was
u, achieved successfully only for ~N ~ 150-200 . The convergence can
~ e visibly be accelerated by simultaneous utilization of the matrix
/ \ [B] and the matrix relating the derivatives with respect to =,
) —r g of the solution on the boundary to the vector {p)!; such amatrix
/*;\\_— \ was constructed earlier (*).
/ \
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